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Climate parameter 
variations:

Δτc, Δfc, Δhc, ΔRe, 

Δq, ΔO3, ΔCO2, 

Δτa, Δα, …

Radiative response 
spectrum:
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…
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Radiative
kernel

Radiative kernels relate the differential radiative response to the 
climate parameter variations between two climate states.



Modeling and retrieving based on radiative kernel approach are different from 
the usual RT modeling and remote sensing retrieval in that

 It is not for the absolute parameter values but for their variations 
between two mean states.

 It is for average quantities over large spatial/temporal scales instead of 
local or instantaneous values.

 The variations in both the parameters and radiation must be small 
compared to their means.

CLARREO benchmark measurements concern the mean spectrum in large 
climate domains instead of instantaneous spectrum; the kernel approach is 
suitable for analyzing CLARREO data. 

Using CERES/MODIS/GEOS data and SMOBA ozone, we have constructed the 
basic kernels for monthly zonal (10-deg) mean climate parameters:

Atmospheric properties:  PW, AOD, O3.

Surface properties:  Snow coverage, Seaice concentration, etc..

Cloud properties:   τ, fc, h, De, Re.



The PDF of cloud τ measured by MODIS in three 10 degree zones (20N-10S) in April 
months spanning 2000-2005, separated by cloud phase and by ocean and land areas. 

MODIS clouds in CERES SSF data are used to derive the probability distribution 
function (PDF) of cloud τ in each month to account the large cloud variation 
from footprint to footprint.
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An example of solar spectral reflectance kernel. This example is for 
the monthly mean reflectance over ocean in April.
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Total column integrated 
atmospheric transmission and 

absorption by atmospheric 
molecules. Different colored 

areas represent absorption by 
major absorptive gases. 



The radiative kernel 
approach provides a simple 

way to separate the total 
radiative response or 

interannual variation to 
different dependent 

parameters.

An example of radiative
attribution.

Kernels applied:
PW, AOD, O3

+ Cloud τ
+ Cloud amount
+ Cloud height
+ Cloud particle size



RMS 

Comparison of monthly global 
mean reflectance anomalies 
using kernel approach with 
SCIAMACHY observations over 
ocean in four months.



Model-observation comparison 
of monthly global mean 
reflectance anomalies using
new SCIAMACHY data.

(Results here are preliminary, 
SCIAM data are not complete.)



There are different approaches for the fingerprinting:

 Optimal detection
 Constrained linear inversion
 Linear regression
 …

ΔR Reflectance change spectrum
K Kernel matrix (fingerprints)
Δa To be retrieved parameter changes corresponding to ΔR
e Errors or residuals that cannot be explained by fingerprints

R 
nw1

 K 
nwnx

a 
1nx

 e 
nw1

R  Ka  e

Using Kernels For Backward Retrieval: 
Fingerprinting
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Experiment A1:

Global mean parameters retrieved 
by optimal detection and 
comparison with truth. 

Data for 4 months 6 years (2000-
2005).

Kernels are averaged over global.

(Idealized case)  



Experiment A2:

Same as A1, but use the 
constrained linear inversion.
(Err accounted, idealized case).



Experiment A3:

Same as A2, but errors are not 
accounted in the inversion.



Results from optimal detection 
for the Tropic region (30N-30S).

(Err accounted)

Results from constrained linear 
inversion for the Tropic region.

(Err accounted)

Results from constrained linear 
inversion for the Tropic region.

(Err in data)



Testing Fingerprinting With Kernel Over Real Data

The fingerprinting approach has been proved to work on model 
simulated data (works on paper). Does it work for real data?

The average time difference of overpass between SCIAMACHY 
on Envisat (~10:00 LST) and the CERES-MODIS package on Terra 
(~10:30 LST) is about 30 minutes. Now we have years of SCIAM 
and MODIS data.

If the mean reflectances measured from the two platforms 
are well correlated, the atmospheric/cloud properties from 
MODIS can be used to test and validate the fingerprinting results 
from SCIAM data.



Comparison of monthly mean 
nadir reflectance between 
SCIAM and MODIS (Channel 1) 
in 5 latitude regions and globe.

When averaged to large 
domains, the two 
measurements are almost 
the same though they are 
not co-located at all!

(Results here are preliminary, 
SCIAM data are not complete.)
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Their deseasonalized
monthly anomalies are 
well correlated!

The monthly anomaly is 
the reflectance difference 
from the average of the 
same months across all 
years.
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The CERES nadir SW 
reflectance anomaly  is also 
well correlated with the 
spectrally-integrated SCIAM 
nadir reflectance!

CERES shortwave reflectance
Spectral-integrated SCIAM

Both spectral and broadband 
reflectances from the two 

independent platforms are 
correlated.

Therefore, data from 
CERES/MODIS and SCIAM 

can be used for fingerprinting 
test!



Regres.:   -0.004  -0.004  -25.3   0.60   0.19  -2.55   2.41  -0.05  -0.06  -1.49  -0.23

Invers.:   -0.005  -0.008  -24.7   0.52   0.17  -2.44   2.44  -0.12  -0.07  -1.12  -0.20

Corresponding Mean Parameter Variation

PW(cm)    AOD  O3(du)      τi τw fi(%)     fw hi(km)   hw De(μm)   Re
MODIS:   -0.030  -0.003  -25.4   0.04   0.31  -2.20   3.01  -0.04  -0.05  -0.66  -0.16

SCIAM data
Fingerprinting fit
Regression fit

An example of 
fingerprinting over 
SCIAM reflectance.



Corresponding Mean Parameter Variation

PW   AOD      O3 τi τw fi fw hi hw De     Re
-0.01 0.001 -15.8  0.10 -0.06  0.86 -1.10  0.20  0.04 -0.31 -0.21

PW   AOD      O3 τi τw fi fw hi hw De     Re
0.03 -0.003    8.9 -0.10  0.08  0.69  0.59 -0.14 -0.01  0.38  0.20

0.04 -0.013  10.3 -0.54 -0.01  1.63  1.59 -0.03 -0.18  0.58  0.29 -0.03 0.007 -17.0  0.08  0.23  0.63 -3.19  0.18  0.05 -0.37 -0.06

0.03 -0.017  10.4 -0.51 -0.06  1.57  2.01 -0.10 -0.17  0.65  0.32 -0.03 0.005 -17.0  0.11  0.17  0.56 -2.75  0.15  0.06 -0.36 -0.02

SCIAM data
Fingerprinting fit
Regression fit

SCIAM data
Fingerprinting fit
Regression fit

MODIS
Fingerprinting
Linear-regression



Initial test of fingerprinting on SCIAM data indicates:

• Numerical solution can be achieved but not unique. 

• Solutions are right mathematically, but may not be correct in physics.

The are several possible sources for the problem in solution:

1. Uncertainty in the observation spectrum.

2. Uncertainty in the kernels.

3. Non-linearity issue.

4. Error/bias in MODIS clouds and atmospheric properties.

5. Inadequate information in the data.

6. … …

Each of the error sources needs to be examined to solve 
the problem. 



 Using CERES/MODIS/GEOS observational data, we have created a set of solar 
spectral radiative kernels, pertinent to the mean reflectance and climate 
parameter variations over large spatial/temporal domains.

 These kernels provide us a simple way to separate/decompose the radiative
response to various dependent parameters and to test fingerprinting techniques 
for CLARREO.

 The interannual variability of spectral reflectance based on the kernels is 
consistent with satellite observations (SCIAMCHAY).

 The good correlation between CERES/MODIS and SCIAM measured radiances 
and the consistency of mean reflectance anomalies between model and 
observations indicate that the kernel approach is appropriate for fingerprinting 
test on SCIAM and CERES/MODIS data for CLARREO.

 The next work is to examine the fingerprinting over real data and figure out and 
solve problems existed, so that it can be used to evaluate the ability of CLARREO 
to detect various climate changes and feedbacks.

Conclusion
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